Name

Part A: Review: Conceptual Practice

1. All of the following processes lead to an increase in entropy EXCEPT?

a) decreasing the volume of a gas

b) melting a solid

c) chemicals reactions that increase the number of moles of gas

d) forming mixtures from pure substances

e) increasing the temperature of a gas.

2. If a chemical reaction is spontaneous yet endothermic, which of the following must be true?

a) $\Delta G > 0; \Delta S > 0; \Delta H > 0$ b) $\Delta G < 0; \Delta S > 0; \Delta H > 0$ c) $\Delta G > 0; \Delta S < 0; \Delta H > 0$ d) $\Delta G < 0; \Delta S < 0; \Delta H < 0$ e) $\Delta G > 0; \Delta S > 0; \Delta H < 0$

With your PAL team, discuss your answer and why the other options are incorrect.

3. If $\Delta G^{\circ} < 0$ for a reaction at all temperatures, then ΔH° is ______ and ΔS° is ______.

- a) negative, positive
- b) positive, negative
- c) negative, negative
- d) positive, positive
- e) positive, either positive or negative.

With your PAL team, discuss your answer and why the other options are incorrect.

4. For the following process, predict the algebraic sign of ΔG° , ΔH° and ΔS° .

Dynamite is mostly nitroglycerin $C_3H_5N_3O_9$. Spontaneous explosive decomposition gives gaseous products CO_2 and H_2O and a lot of heat is evolved.

 ΔG° ΔH° ΔS°

Name

5. A conceptual question. Is hydrogen peroxide stable at 298K? What about at higher temperatures or lower temperatures...is it stable?

 $\rm H_2O_2~(g) \rightarrow \rm H_2O~(l)$ + $^{1\!\!/_2}\rm O_2~(g)~\Delta \rm H^\circ$ = -106 kJ/mol and $\Delta \rm S^\circ$ = 58 J/mol K

Part B: Calculating the Change in Gibbs Free Energy for non-standard states

6. Calculate ΔG° for the following reaction at T = 298K (K_b = 1.8 x 10⁻⁵).

 NH_3 (aq) + H_2O (I) $\rightarrow NH_4^+$ (aq) + OH^- (aq)

Use $\Delta G^{\circ} = -RTInK$

Now calculate ΔG at T = 298K when [NH₃] = 0.10M, [OH⁻] = 0.050M, [NH₄⁺] = 0.10M, Use $\Delta G = \Delta G^{\circ} + RTInQ$

Part C: Calculating the Equilibrium Constant

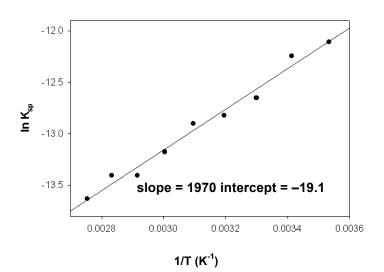
7. Use the free energies of formation given below to calculate the equilibrium constant (K) for the following reaction at 298 K.

Use $\Delta Go = -RTInK$

8. Determine the equilibrium constant for the following reaction at 298 K.

 $CH_2O(g) + 2 H_2(g) \rightarrow CH_4(g) + H_2O(g) \quad \Delta H^\circ = \ -94.9 \text{ kJ/mol}; \ \Delta S^\circ = -224.2 \text{ J/mol} \text{ K}$

Name


9. Equilibrium constants can be used to calculate ΔH° and ΔS° .

Recall that $\Delta G^{\circ} = -RTInK_{eq}$. If we rearrange this to $\Delta H^{\circ} - T\Delta S^{\circ} = -RTInK_{eq}$ and after some algebra, we arrive at the following equation known as the van't Hoff equation.

$$\ln K_{eq} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

Here is our example. The solubility of calcium hydroxide was measured at several temperatures, and the K_{sp} was calculated. The data is below.

T (°C)	K _{sp}	Т (К)	1/T (K ⁻¹)	$\ln K_{\text{sp}}$
10	5.5×10^{-6}	283	0.00353	-12.11
20	4.8×10^{-6}	293	0.00341	-12.25
30	3.2×10^{-6}	303	0.00330	-12.65
40	2.7×10 ⁻⁶	313	0.00319	-12.82
50	2.5×10 ⁻⁶	323	0.00310	-12.90
60	1.9×10 ⁻⁶	333	0.00300	-13.17
70	1.5×10 ⁻⁶	343	0.00292	-13.41
80	1.5×10 ^{−6}	353	0.00283	-13.41
90	1.2×10 ⁻⁶	363	0.00275	-13.63

- 1. On a separate piece of paper, determine the ΔH° , ΔS° , and ΔG° (this is an estimate since the temperatures above are not 298K).
- 2. Determine if it is spontaneous from ΔG° . Calculate the temperature at which the reaction will crossover from being spontaneous to nonspontaneous or vice versa.